LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER – APRIL 2023 UMT 1502 – CALCULUS
Date: 09-05-2023 Dept. No. Max. : 100 Mark Time: 01:00 PM - 04:00 PM
PART – A
Answer all the questions: $(10 \times 2 = 20)$
1. State Leibnitz formula for the derivative of the product of two functions.
2. Find n^{th} derivative of $\frac{1}{ax+b}$.
3. Find the slope of the tangent with the initial line for the cardioid $r = a(1 - \cos\theta)$ at $\theta = \frac{\pi}{6}$.
4. Write the formula to find radius of curvature of $y = f(x)$.
5. Evaluate $\int (2x+3)^2 dx$.
6. State any two properties of definite integral.
7. Evaluate $\int_0^1 \int_0^1 (x + y) dx dy$.
8. Define Jacobian of two variables u,v with respect to x,y.
9. Define gamma function.
10. State any two properties of beta function.
PART B $(5 \times 9 - 40)$
11. Find the coordinates of centre of curvature of $xv = 2at$ (2.1).
12. If v=a cos(log x)+b sin(log x), prove that $x^2v_{n+2} + (2n+1)xv_{n+1} + (n^2+1)v_n = 0$.
13. Find the angle of intersection of cardioids $r = a(1 + \cos\theta)$ and $r = b(1 - \cos\theta)$
14. Evaluate $\int_0^1 x^m \log(\frac{1}{x})^n dx$.
15. Find a reduction formula for $\int \sin^n x dx$, where n is a positive integer.
16. By changing the order of integration, evaluate $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy dx dy$.
17. Prove that $\Gamma(n+1) = n!$
18. Evaluate (i) $\int_0^1 x^7 (1-x)^8 dx$ (4 marks)
(ii) $\int_0^{\frac{\pi}{2}} \sin^{10}\theta \ d\theta$ (4 marks)
PART – C
Answer any Two of the following: $(2 \times 20 = 40)$
19. Show that the maximum value of $x^2y^2z^2$ subject to the restriction $x^2 + y^2 + z^2 = a^2$ is $\left(\frac{a^2}{3}\right)^2$.
20. Find the value of the integral $\int \int \int xyz dx dy dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.
21. Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 22. Derive the relationship between beta and gamma function.

\$\$\$\$\$\$\$